互斥事件与对立事件的关系
互斥事件与对立事件的关系在于:对立事件属于一种特殊的互斥事件。对立必然互斥,互斥不一定会对立。
一个事件本身与其对立事件的并集等于总的样本空间;而若两个事件互为互斥事件,表明一者发生则另一者必然不发生,但不强调它们的并集是整个样本空间。即对立必然互斥,互斥不一定会对立。互斥事件与独立事件的不同点大致有如下三点:
第一,针对的角度不同.前者是针对能不能同时发生,即两个互斥事件是指两者不可能同时发生;后者是针对有没有影响,即两个相互独立事件是指一个事件发生对另一个事件发生的概率没有影响(注意:不是一个事件发生对另一个事件发生没有影响)。
第二,试验的次数不同。前者是一次试验下出现的不同事件,后者是两次或多次不同试验下出现的不同事件。
第三,概率公式不同,若A与B为互斥事件,则有概率加法公式P(A+B)=P(A)+P(B),若A与B不为互斥事件,则有公式P(A+B)=P(A)+P(B)-P(AB);若A与B为相互独立事件,则有概率乘法公式P(AB)=p(A)P(B)。
免责声明:该内容由用户自行上传分享到《 秘密研究社》,仅供个人学习交流分享。本站无法对用户上传的所有内容(包括且不仅限于图文音视频)进行充分的监测,且有部分图文资源转载于网络,主要用于方便广大网友在线查询参考学习,不提供任何商业化服务。若侵犯了您的合法权益,请立即通知我们( 管理员邮箱:[email protected]),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!!